

TROUBLESHOOTING FLOUR TORTILLAS

Stephen Bright La Chiquita Tortilla

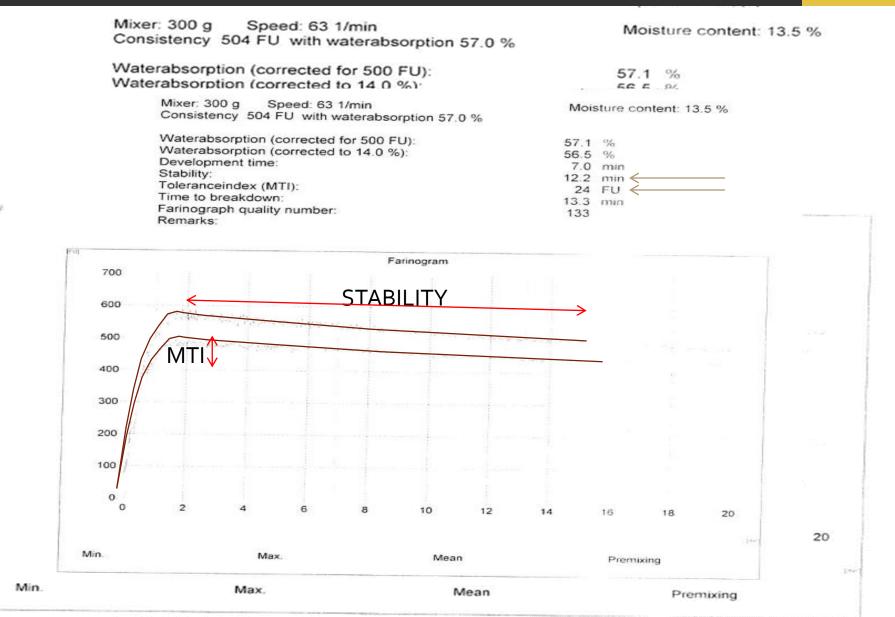
Las Vegas Convention Center September 7th & 8th 2019

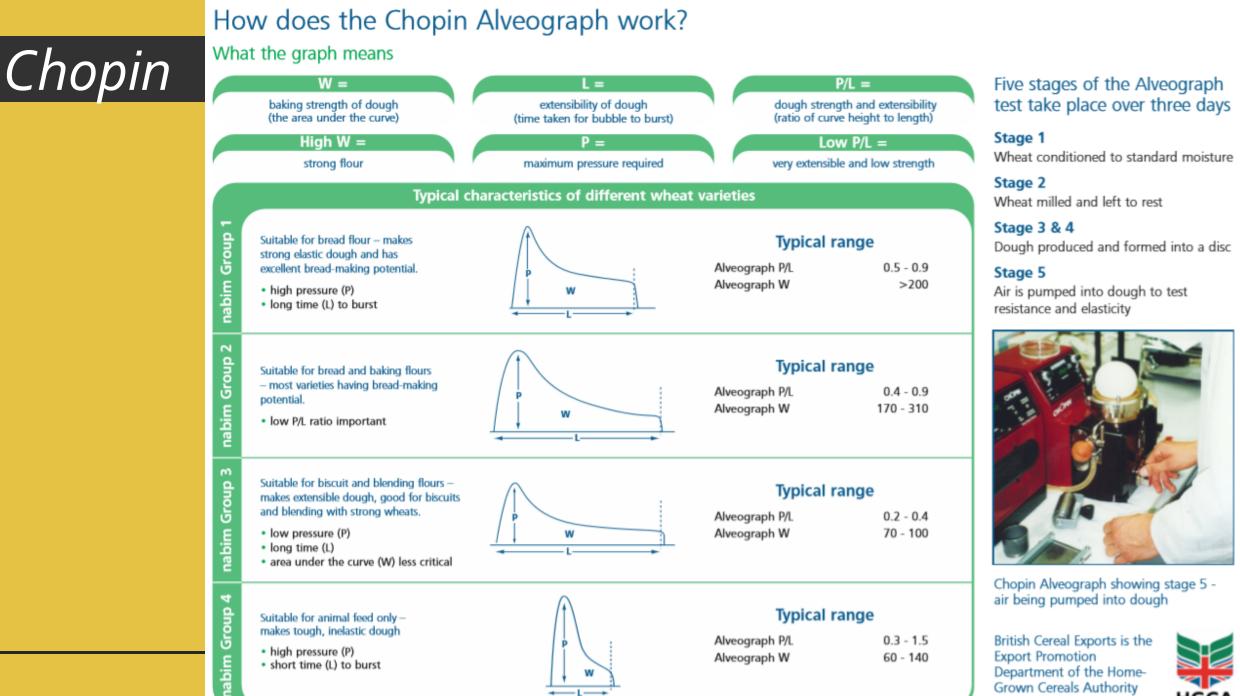
Troubleshooting Definition

- Troubleshooting noun [U]
- US
 - the process of solving problems, esp. complicated problems in a system:

- Troubleshooting noun [U]
- UK
 - <u>discovering</u> why something does not <u>work effectively</u> and making <u>suggestions</u> about how to <u>improve</u> it

Critical Areas to Troubleshoot


- 1. Ingredients
- 2. Formulation
- 3. Process
- 4. Equipment
- 5. Sanitation

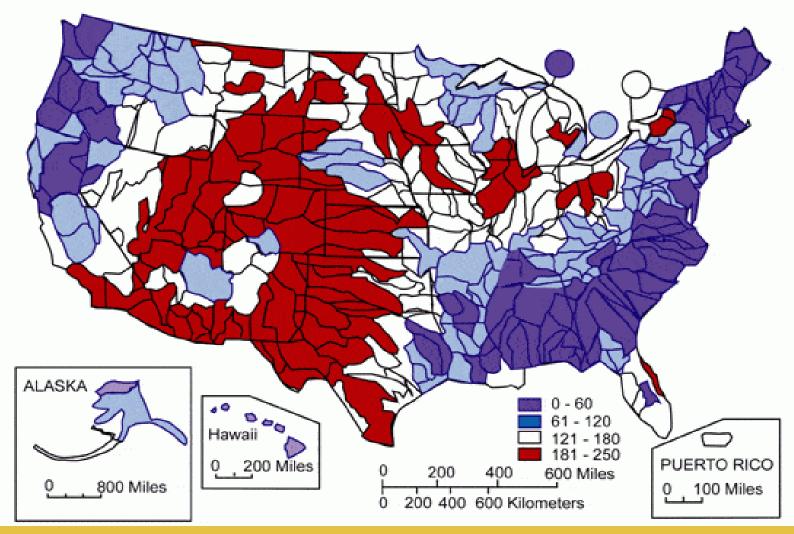

Critical Areas to Troubleshoot

Ingredients

- FLOUR
 - Stability is more important than protein
 - MTI Mixing Tolerance Index = best guide for flour quality and mix time, indicates quantity of reducing agents required
 - 10-30 = > reducing agents (30 ppm cysteine / sulfites) or
 0.5% inactive dry yeast
 - 30-50 = ~ 10 ppm cysteine / sulfites 0.25% inactive dry yeast
 - > 50 = add Vital Wheat Gluten, possible add reducing agents

Understanding a Farinograph

Grown Cereals Authority


Critical Areas to Troubleshoot

- WATER
- Water Hardness
 - Measured in Parts per Million
 - < 100 ppm = Soft Dough</pre>
 - Cut or remove reducing agents
 - Between 120 ppm 200 ppm = Soft but Elastic Dough ideal for tortillas
 - > 250 ppm Very Elastic
 - Add more reducing agents
 - Increase mix time
 - Reduce salt

Water Hardness US

CONCENTRATION OF HARDNESS AS CALCIUM CARBONATE, IN MILLIGRAMS PER LITER

Water Hardness Other Regions

cities with the hardest water

UK towns and

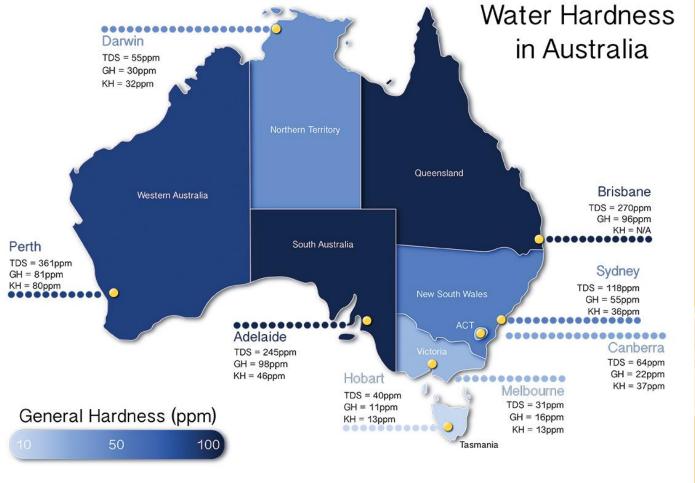
Water Hardness and the worst locations: Milligrams per litre of CaCo3 {Calcium carbonate}

KEY:

- Soft: Under 150
- Moderately Hard: 151-200
- hard: 201-300
- A Hard M4 corridor
- ♦ Very Hard: 600

The South and East of England has the hardest water

Milton Keynes

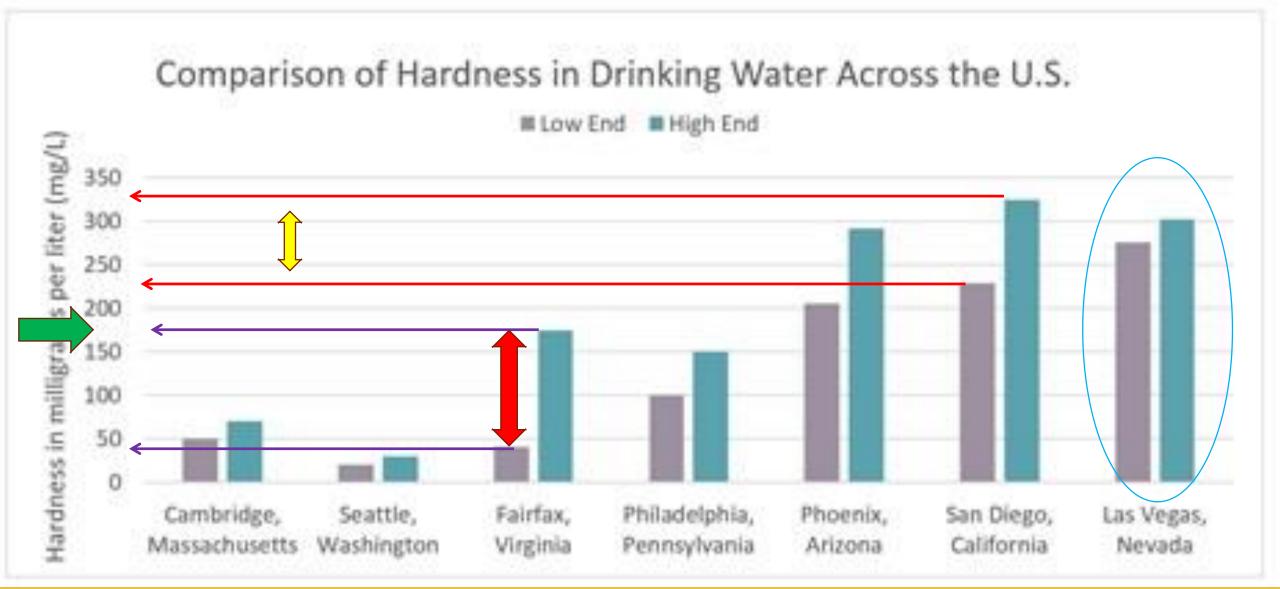

Slough

VERY HARD WATER

{ Over 300 mg of CaCo3 per litre }

vindon Hempstead

London

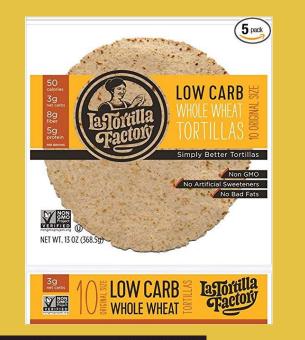


Water Quality in Las Vegas

Las Vegas Valley Water District <u>https://www.lvvwd.com/about/water-district/index.html</u>

Hardness US Regions

- Traditional US, Mexico
 - Water 50% of Flour
 - Shortening 10% of Flour
 - Salt 2 2.5% of Flour
- Europe
 - Water 35 40% of Flour
 - Shortening / Oil 4 10% of Flour
 - Glycerin 5 10% of Flour
 - Salt 1-1.5% of Flour



Formulation Shortening vs Oil

• Flour	100	• Flour	100
• Water	50	• Water	55
Shortening	10	• OIL	3
• Salt	2	• Salt	1.5
Baking Powder		Baking Powder	
- Translucent	1-2	- Translucent	1-2
– Fluffy	2-4	– Fluffy	2-4
Emulsifier	0.5	• Emulsifier	1-2
• Preservatives	1	Preservatives	1
• Fumaric acid	0.5	• Fumaric acid	0.5

Formulation

- Low carb
 - Increase water fiber + protein
- Paleo
 - High water due to unique flours used
- Cauliflower
 - High water naturally from cauliflower
- Bean
 - Increase water, pulse protein and fiber
- Vegetable based

Formulation

- Unique formulas will need different processing parameters
 - Mix Time
 - Mixer type Horizontal vs Spiral Mixer
 - Divider style Extruder vs piston
 - Press vs Sheeted or Die Cut

Troubleshooting - Process

- Mixing
 - Time + Temperature vs Dough Development
 - Each formula or size will have a specific mixing time
 - As mix time increases temperatures increase
 - Increased temperatures lead to translucency
 - Cadence for mixing doughs is 1 dough every 20 minutes (3 4 doughs every hour)
 - As dough gets older, translucency increases and shapes become inconsistent

- Dry proofer
 - Crusty dough balls
 - Poor size, no extensibility in the press

- Wet Proofer
 - Sticking to proofer cups
 - Doubles

Troubleshooting Tortilla Faults

• Understanding cause and effect and how to solve a problem

Troubleshooting Tortillas

• Sticking

- Edges
- Shapes

- Staling
 - Rollability / Foldability
 - Mouthfeel

- Sticking Defined:
 - Two or more tortillas that will not separate from each other without tearing or ripping after being packaged for any period of time.

- Sticking can be caused by several factors
 - Process
 - Ingredients
 - Formulation.

Sticking - Press Setup

- Dry, stiff doughs require increased pressure, dwell time and temperature to obtain correct sizes
 - X gelatinizes (cooks) starch, sets structure
 - × activates all leavening
 - creates top and bottom crust which entrains steam increasing the likelihood of pillowing (puffing)
- Ideal press settings
 - ✓ dwell time = ~1.3 seconds +/-0.2
 - ✓ pressure = ~ 1000 psi +/- 200
 - ✓ temperature = ~375 / 400 +/- 25°F
 - ✓ New Mega Presses = $< 325^{\circ}F$

Sticking - Baking Profile

- Over baking creates pillowing or puffing
 - top -thin crust separates from thick -bottom crust
 - thin crust and blisters are weak
 - tear and flake

Over baking + Zippering

Sticking - Cooling Room

- Purpose of the cool down is to fully prepare the tortilla for packaging, transportation and storage
- Typical cooler conditions
 - cool and HUMID, 35 40°F @80%+RH
 - Room is cool and wet causing mist / dew / fog to condense back on the tortilla
- Cooler conditions must be adjusted to obtain:
 - Tortilla pack temperature +/- 10°F package room
 - Humidity **<** 60%RH critical

Sticking - Packaging

- Minimize temperature shifts after packaging
 - promotes moisture migration
 - 80°F packing into case
 - 50 -100°F warehouse temperature
 - 20 140°F truck shipping temperature winter / summer
 - 70°F grocery store temperature
 - 40°F consumer refrigeration
- Avoid excessive compression
 - over-packing
 - excessive weight

Sticking -Ingredient causes

- Flour weak flour
 - poor gluten quality, although quantity may be available
 - translates to:
 - poor dough process tolerance
 - weak baked film formation
 - poor resistance to compression
- Add Vital Whaet Gluten

Sticking - Reducing Agents

- L-Cysteine and sodium metbisulfite
 - greater extensibility in the dough
 - higher levels (>60ppm) lead to weak protein and crust resilience.
 - Increases the occurrence of sticking

Obtain dough consistency through full mix development

Sticking – Fat Type

Type of fat being used is critical:

- Liquid oils remain liquid at room temperature
 - Increases surface adhesion on the tortilla
 - Liquid oils will always create zippering
 - Use <30% of normal levels if using oil (3 Oil for 10 Shortening)

- Sugar is a tenderizer
- Sugar is hygroscopic
- As sugar increases, hygroscopicity increases
 - increases stickiness and tenderness.
 - Dextrose, glucose, fructose and lactose are hygroscopic
- Glycerin can also lead to sticking

Tortilla Troubleshooting

SIZE AND SHAPE

Tortilla Size and shapes

Tortillas too small

- Strong flour = elastic
- Under mixed = elastic
- Under hydrated = dry, elastic
- Cold dough = elastic
- Under scaling = insufficient mass / pressure
- Excessive floor time after mixing / dough frequency
 - 3 doughs per hour is the minimum rate
 - fresh dough every 20 minutes
- = / > than 30 minutes per dough will cause the last part of the dough to become dry
- Poor press set up
- Oven shrinkage
 - Protein elasticity, insufficient press energy imparted to dough

Tortilla Sizes –Too Large

- Overly extensible dough
 - Flour quality -Poor
 - Protein quantity / quality
 - Over mixing
 - Hot dough*
 - High levels reducing agents
 - Press too severe
 - Excessive dwell time, pressure
 - High fat levels >12%
 - Over hydration

• Lacing

- Caused by excessive cooking, structure of the dough is set prior to obtaining the desired size
- Dough is cooked in the press, protein and starch are denatured preventing further mobility, before it gets to the final size
 - Elastic dough
 - Under hydrated
 - Under mixed
 - Low reducing agents

Rough Edges

• Brittle, flaky

- Curling of the dough out of the press into the oven
 - Cupping caused by large temperature differential between top and bottom plates >25°F
 - Typically top plate hotter than bottom
 - Facilitates release
- Curled edges expose more surface area to heat
 - Creating toasted edges leading to dry, brittle flaky edges

Troubleshooting

CONSUMER – ORGANOLEPTIC

Rollability / Foldability

- Staling
 - Starch retrogradation
- Over baking
 - Damaging starch protein
- Lean Formula
 - Lower fat, sugar, gums and emulsifiers

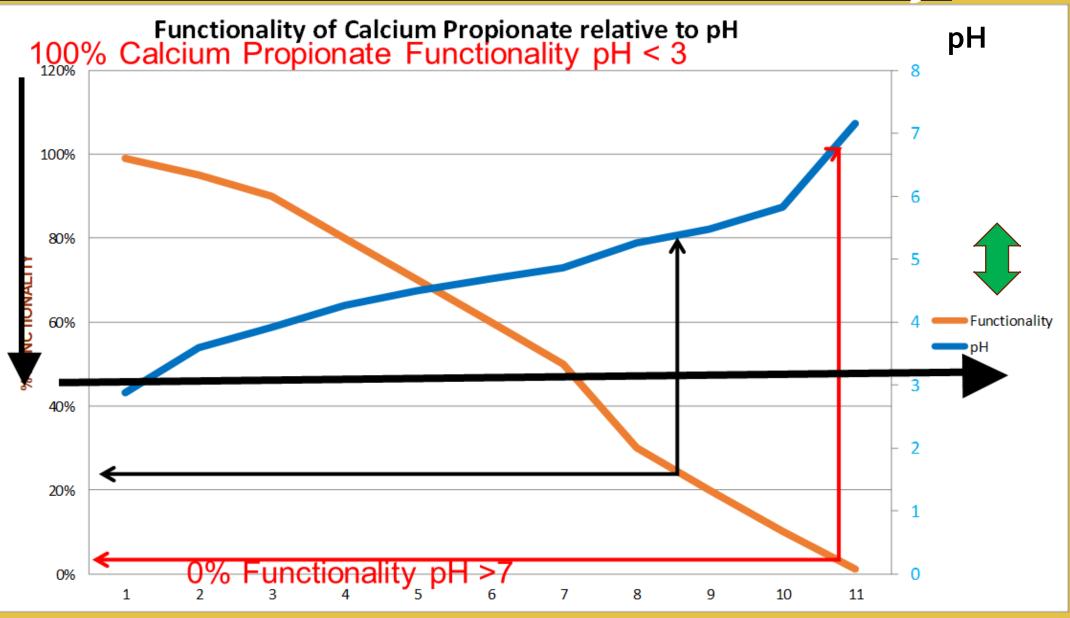
Mouthfeel, bite

✓ Short tender bite

- Established by formula and process
 - Lamination
 - From leavening
 - Not over pressed pressure, dwell time, temperatur

X Leathery, tough bite

- High translucency
 - Insufficient leavening
 - Hot press
 - Extended press dwell times


Microbial Stability

- Balance between:
 - Shelf life expectations
 - pH
 - Preservatives
 - Homogenized ingredients

Microbial stability

• Thank You